Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{VPO}_{5}\right)_{8}$: a novel threedimensional framework solid

Ai-Yun Zhang,* Juan Zheng and Qiu-Fen Wang

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
Correspondence e-mail: zay@hpu.edu.cn

Received 2 November 2009
Accepted 11 January 2010
Online 3 February 2010
The novel hydrothermally synthesized title compound, pentabarium tetrachloride octahydrate octakis(oxovanadium phosphate), $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{VPO}_{5}\right)_{8}$, crystallizes in the orthorhombic space group Cmca with a unit cell containing four formula units. Two Ba^{2+} cations, two Cl^{-}anions and the O atoms of four water molecules are situated on the (100) mirror plane, while the third independent Ba^{2+} cation is on the intersection of the (100) plane and the twofold axis parallel to a. Two phosphate P atoms are on twofold axes, while the remaining independent P atom and both V atoms are in general positions. The structure is characterized by two kinds of layers, namely anionic oxovanadium phosphate $\left(\mathrm{VPO}_{5}\right)$, composed of cornersharing VO_{5} square pyramids and PO_{4} tetrahedra, and cationic barium chloride hydrate clusters, $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$, composed of three Ba^{2+} cations linked by bridging chloride anions. The layers are connected by $\mathrm{Ba}-\mathrm{O}$ bonds to generate a three-dimensional structure.

Comment

The V-P-O system has received considerable attention, not only because of its application to catalysis, but also due to its rich and impressive structural chemistry associated with the ability of vanadium to have tetrahedral, square-pyramidal and octahedral coordination environments in various oxidation states. The introduction of pyridinium cations into the V-P-O system leads to rather complicated structures (Huang et al., 2001; Luan et al., 2001). Several structures have also been reported with the introduction of organic ammonium cations into the V-P-O system (Zhang et al., 1995; Soghomonian et al., 1996; Luan et al., 2003). A few structures with introduction of inorganic cations into the $\mathrm{P}-\mathrm{V}-\mathrm{O}$ system have also been reported (Soghomonian et al., 1998; Khan et al., 1996; Tian \& $\mathrm{Wu}, 2002$). In the present paper, we report a new compound, $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{PVO}_{5}\right)_{8}$, in which the oxovanadium phosphate framework is templated by an unusual cationic barium chloride hydrate cluster of composition $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$.
$\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{VPO}_{5}\right)_{8}$ crystallizes in the orthorhombic space group Cmca with a unit cell consisting of four asym-
metric units. The coordination environments of the V, P and Ba atoms are shown in Fig. 1. Each of the two independent V sites in the asymmetric unit exhibits a distorted square-pyramidal $\left[\mathrm{VO}_{5}\right]$ geometry. The basal positions are defined by Oatom donors from four adjacent phosphate groups and the apical O atoms (O 1 and O 2) are coordinated to adjacent Ba^{2+} cations. Based on the stoichiometry of the compound and assuming normal oxidation states for $\mathrm{Ba}, \mathrm{Cl}, \mathrm{P}$ and O , the oxidation states of vanadium are V^{IV} and V^{V} in a ratio of 3:1, i.e. two of the eight V atoms are V^{V} and six are V^{IV}. Bondvalence sum calculations (Brese \& O'Keeffe, 1991) for V1 and V2 give values of 4.42 and 4.35 , respectively. The mean valence, 4.385 , is reasonably close to 4.25 for $\mathrm{V}^{\mathrm{IV}}: \mathrm{V}^{\mathrm{V}}=3: 1$. Similar mixed bond-valence sums for V atoms have been reported in other oxovanadium phosphates (Zhang et al., 1999; Le Fur et al., 2001). Atoms Ba1, Ba2, Cl1, Cl2 and O11O14 are situated on the (100) mirror plane, while atom Ba 3 is on the intersection of the (100) plane and the twofold axis parallel to a. Atom P 1 is on the twofold axis parallel to b and atom P 3 is on the twofold axis parallel to a. All other atoms, i.e. $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{P} 2$ and $\mathrm{O} 1-\mathrm{O} 10$, are on general positions.

Atoms Ba 1 and Ba 2 are both 11-coordinate, with four phosphate O atoms, two vanadyl oxide atoms, three water molecules and two bridging chloride anions. Atom Ba 3 is tencoordinate, with four phosphate O atoms, four water molecules and two bridging chloride anions. The $\mathrm{Ba}-\mathrm{O}$ bond lengths range from 2.725 (4) to 3.086 (7) Å, while the $\mathrm{O}-$ $\mathrm{Ba}-\mathrm{O}$ angles span the range 46.77 (10) -180°. The $\mathrm{Ba}-\mathrm{Cl}$ bond lengths vary from 3.225 (2) to 3.362 (2) \AA, with the $\mathrm{Cl}-$ $\mathrm{Ba}-\mathrm{Cl}$ angles in the range 131.61 (5) -180°.

There are two kinds of layer in the structure, namely anionic oxovanadium phosphate $\left(\mathrm{VPO}_{5}\right)$ and cationic barium chloride hydrate, $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$. The VPO_{5} layers consist of a checkerboard pattern of corner-sharing VO_{5} square pyramids and PO_{4}

Figure 1
The asymmetric unit and the complete coordination environments of the V, Ba and P atoms in the structure of $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{VPO}_{5}\right)_{8}$. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (ii) $-x, y, z$; (iii) $x,-y+1,-z+1$; (iv) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (v) $x, \frac{1}{2}+y, \frac{1}{2}-z$; (vi) $-x+\frac{1}{2}, y,-z+\frac{1}{2}$; (vii) $-x-\frac{1}{2},-y+\frac{3}{2},-z+1$; (viii) x, $2-y, 1-z$; (ix) $x,-1+y, z ;(\mathrm{x})-\frac{1}{2}-x, \frac{1}{2}+y, z ;($ xi $)-x, 1-y, 1-z ;$ (xii) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (xiii) $-\frac{1}{2}+x, y, \frac{1}{2}-z$.]

Figure 2
A view of the VPO_{5} layers along the a axis. The VO_{5} square pyramids are larger and the PO_{4} tetrahedra are smaller.

Figure 3
A view of the $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ layers along the a axis.

Figure 4
The three-dimensional structure of $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{VPO}_{5}\right)_{8}$, viewed along the b axis. The layers parallel to the $b c$ plane can be seen to stack along the a axis.
tetrahedra in the $b c$ plane, and are similar to those found in $\mathrm{Na}_{3} \mathrm{~V}_{2} \mathrm{O}_{2} \mathrm{~F}\left(\mathrm{PO}_{4}\right)_{2}$ (Massa et al., 2002) (Fig. 2). In the layers of barium chloride hydrate, clusters of three Ba^{2+} cations are linked via additional bridging of the chloride anions and water molecules to form a two-dimensional network in the $b c$ plane (Fig. 3). To our knowledge, this barium chloride hydrate
structural unit is unprecedented. Adjacent VPO_{5} and $\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ layers are connected by $\mathrm{Ba}-\mathrm{O}$ bonds involving both phosphate and vanadyl O atoms of the anionic layers, and the layers alternate along the a axis to generate the threedimensional structure (Fig. 4).

Experimental

Single crystals of the title compound were prepared from a mixture of $\mathrm{NH}_{4} \mathrm{VO}_{3}(2 \mathrm{mmol}, 0.234 \mathrm{~g}), \mathrm{BaCl}_{2}(2 \mathrm{mmol}, 0.4886 \mathrm{~g}), \mathrm{H}_{3} \mathrm{BO}_{3}$ $(2.5 \mathrm{mmol}, 0.1758 \mathrm{~g}), \mathrm{H}_{3} \mathrm{PO}_{4}(2 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$. The mixture was sealed in a 30 ml Teflon-lined stainless steel vessel and heated at 443 K for 6 d under autogenous pressure, then cooled to room temperature. The resulting dark-green crystals were collected and dried in air at ambient temperature.

Crystal data

$\mathrm{Ba}_{5} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{VPO}_{5}\right)_{8}$
$M_{r}=2267.91$
Orthorhombic, Cmca
$a=13.5073$ (8) \AA
$b=8.8803$ (5) A
$c=35.482(2) \AA$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.339, T_{\text {max }}=0.492$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.078$
$S=1.04$
1993 reflections
$V=4256.1$ (4) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=6.90 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.20 \times 0.12 \times 0.12 \mathrm{~mm}$

10601 measured reflections 1993 independent reflections 1614 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.046$

The H atoms were located in a difference map and included in the model with $\mathrm{O}-\mathrm{H}$ distances constrained to $0.85 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$. The highest peak in the difference map is $1.82 \AA$ from atom H 11 and the deepest hole is $0.66 \AA$ from atom Ba1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Universities and Colleges Natural Science Foundation of Henan (grant No. 2009A150011) and the Natural Science Foundation of China (grant No. 200903036) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3227). Services for accessing these data are described at the back of the journal.

References

Bruker (2007). APEX2 (Version 2.1-4) and SADABS (Version 2007/4). Bruker AXS Inc., Madison, Wisconsin, USA.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Huang, C.-H., Huang, L.-H. \& Lii, K.-H. (2001). Inorg. Chem. 40, 2625-2627.

inorganic compounds

Khan, M. I., Meyer, L. M., Haushalter, R. C., Schweitzer, A. L., Zubieta, J. \& Dye, J. L. (1996). Chem. Mater. 8, 43-53
Le Fur, E., Villars, B.-D., Tortelier, J. \& Pivan, J.-Y. (2001). Int. J. Inorg. Mater. 3, 9-15.
Luan, G.-Y., Wang, M.-H., Wang, E.-B., Han, Z.-B. \& Hu, C.-W. (2001). J. Mol. Sci. 17, 121-123.
Luan, G.-Y., Wang, M.-H., Wang, E.-B., Liu, W.-C., Li, Y.-G. \& Xu, L. (2003). J. Mol. Sci. 19, 115-118.

Massa, W., Yakubovich, O.-V. \& Dimitrova, O. V. (2002). Solid State Sci. 4, 495-501.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Soghomonian, V., Haushalter, R. C., Zubieta, J. \& O’Connor, C. J. (1996). Inorg. Chem. 35, 2826-2830.
Soghomonian, V., Meyer, L. A., Haushaker, R. C. \& Zubieta, J. (1998). Inorg. Chim. Acta, 275-276, 122-129.
Tian, J.-L. \& Wu, J.-G. (2002). Chin. Rare Earths, 23, 24-26.
Zhang, L.-R., Shi, Z., Yang, G.-Y., Chen, X.-M. \& Feng, S.-H. (1999). J. Solid State Chem. 148, 450-454
Zhang, Y.-P., Clearfield, J. A. \& Haushalter, R. C. (1995). Chem. Mater. 7, 1221-1225.

